Spectroscopic and Optoelectronic Properties of Hydrogenated Amorphous Silicon-Chalcogen Alloys

نویسنده

  • Shawqi Al Dallal
چکیده

Hydrogenated amorphous silicon-chalcogen alloy thin films have been the subject of growing interest during the past two decades. Thin films of these alloys are usually prepared by the decomposition of SiH4 and H2S or H2Se gas mixtures in a radiofrequency plasma glow discharge at a substrate temperature of 250°C. The alloy composition is varied by changing the gas volume ratio RV = [chalcogen/ silane]. Infrared spectroscopy is used to explore the bonding structure of the alloy. The material exhibits hydrogen-induced bands, normally observed in a-Si:H spectra and other chalcogen-induced bands resulting from bonding chalcogen atoms with hydrogen and silicon. Analysis of the vibrational spectra of this material reveals the presence of significant levels of Si-chalcogen-SiHn configurations. Optical and electrical measurements show that increasing the chalcogen content results in an increase of the optical (Tauc) gap and a decrease in dark conductivity and photoconductivity. Subgap absorption measurements are employed to probe the Urbach energy and defect density. Upon increasing the chalcogen content, a broadening of band tails and an increase in defect density is observed. These results are shown to be consistent with photoluminescence measurements carried out on these materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

Optimization of thin film photovoltaics (PV) relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H) PV device configuration. The nucleation and evol...

متن کامل

Hole drift mobility measurements in amorphous silicon-carbon alloys

Hole drift mobilities have been measured using photocarrier time-of-l-light for several hydrogenated amorphous silicon-carbon alloy specimens. We find that, as the band gap increases, the hole drift mobility remains essentially constant. The temperature and dispersion properties were broadly consistent with hole multiple trapping in the valence bandtail. In conjunction with previous drift mobil...

متن کامل

Preparation of hydrogenated amorphous silicon tin alloys

2014 This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples. Re...

متن کامل

Interference fringe-free transmission spectroscopy of amorphous thin films

Articles you may be interested in Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films Amorphous silicon thin-film transistors with field-effect mobilities of 2 cm 2 / V s for electrons and 0.1 cm 2 / V s for holes Appl. Optical study of disorder and defects in hydrogenated amorphous silicon carbon alloys Appl. Effect o...

متن کامل

Deposition of amorphous silicon alloys

Hydrogenated amorphous silicon alloys of carbon and germanium can be deposited by glow-discharge decomposition of gaseous hydrides or fluorides. Non-plasma methods such as photochemical vapour deposition are also used and offer guidelines for understanding and improving the standard glow-discharge method. These amorphous alloys usually have poorer structural and electronic properties than pure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017